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ABSTRACT

This paper presents a stochastic approximation framework to solve a generalized problem of oft-
line calibration of demand for a multimodal microscopic (or mesoscopic) network simulation
using aggregated sensor data. A key feature of this problem is that demand, although typically
treated as a continuous variable is in fact discrete, particularly in the context of agent-based
simulation. To address this, first, we use a discrete version of the weighted simultaneous
perturbation stochastic approximation (termed W-DSPSA hereafter) algorithm for minimizing a
Generalized Least Squares (GLS) objective (that measures the distance between simulated and
observed measurements) defined over discrete sets. The algorithm computes the gradient at each
iteration using a symmetric discrete perturbation of the calibration parameters and a multimodal
weight matrix to improve accuracy of the gradient estimate. The W-DSPSA algorithm is then
applied to the large-scale calibration of multimodal OD flows (including private vehicle (PVT)
and public transit trips (P7)) in a microscopic network simulation model of Singapore. The
results indicate that an acceptable margin of error on the vehicle loop count (VLC) and bus
passenger count (BPC) are achieved at convergence with an improvement of 60~80% in root
mean squared errors. Lastly, we validate the calibration results with observed travel-times on the
network. Statistical comparison shows good agreements on both point-to-point travel-time (P77)
and public bus’s stop-to-stop ride-time (SRT) with the field observations.

Keywords: Calibration and validation, Weighted Discrete Simultaneous Perturbation Stochastic
Approximation, Multimodal demand estimation, SimMobility Short-term
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1. INTRODUCTION

1.1 Off-line Calibration of Traffic Simulation Models

During the last few decades, extensive research has been devoted to the development of traffic
simulation models that capture traffic dynamics at varying levels of resolution to accurately
replicate the real-world. Simulation tools have important applications in understanding the
implications of future scenarios in advance, enabling transportation planners and operators to
estimate the impact of urban policy and operational decisions on the transportation system.
Recognizing this, the Federal Highway Administration has funded the development of traffic
simulation through the NGSIM program which has already played an important role in various
policy assessments (/). Recently, emerging trends in mobility technologies and services (such as
automated mobility-on-demand (2), ride-hailing services) have motivated the development of
more accurate and high-fidelity traffic simulation models so as to evaluate and assess these
mobility-sensitive scenarios (3).

A crucial prerequisite in carrying out policy and operational assessments is the ability to
generate robust, accurate and reliable simulation results, for which, calibration is essential.
Calibration is the process of estimating simulation parameters by matching simulated
measurements against observed measurements, and has been traditionally formulated as an
optimization problem where the objective function is based on goodness-of-fit measures (4).

An important input for traffic simulation is time-dependent OD (origin-destination)

flows. This set of dynamic demand parameters has successfully been calibrated with traffic
simulators using various methods: the traditional generalized least squares approach (J),
bayesian inference (6), marginal computation with kinematic wave theory (7), principle
component analysis (7). The most commonly used approaches for solving optimization
formulations of the calibration problem are gradient descent methods such as the
Newton—Raphson method (9) and steepest descent method (/0). Another widely used approach
is the finite difference stochastic approximation (FDSA) algorithm (//) which is known to be
suitable given the non-linear nature of calibration problem and the presence of measurement
errors. A key challenge with the FDSA algorithm lies in mainintaing computational tractability
given the expensive nature of gradient computations. To address this, the simultaneous
perturbation stochastic approximation (SPSA) was proposed (/2) which significantly improves
computational performance by perturbing all parameters simultaneously during gradient
computation. The SPSA algorithm has received significant attention because of efficiency (only
two evaluations of the objective function are required in each iteration), applicability (simple to
implement in high-dimensional real-world problems), accuracy (properly handles stochasticity
and measurement errors), and has been applied to the off-line demand calibration problems by
various researchers (13, 14, 15, 16).
However, recent work has identified an issue of unstable convergence of the SPSA algorithm in
large-scale applications arising from the gradient approximation (/7, 18, 19). To overcome this,
the c-SPSA (cluster-wise SPSA) and W-SPSA (Weighted SPSA) algorithms were proposed. The
c-SPSA (17) approximates the gradient within a small number of homogeneous clusters one at a
time. The W-SPSA (/8, 19) incoporates spatio-temporal correlations between parameters and
measurements in approximating the gradient thereby minimizing the impact of uncorrelated
measurements. The enhanced algorithms outperform the original SPSA showing improved
robustness and convergence.

In summary, the literature has focused largely on solving the calibration problem using
stochastic approximation (SA) algorithms in the continuous domain. However, certain
calibration parameters are discrete valued (Eg: OD demands) and the discrete nature of these
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variables is not explicitly handled. This paper contributes to the existing literature by presenting
a solution approach using the discrete version of W-SPSA (W-DSPSA) which is appropriate
when the domain of the objective function is defined on a discrete set of points. A case study on
a large-scale multimodal network using a traffic microsimulator examines performance of the W-
DSPSA algorithm. The motivation is to view the demand calibration problem from the
perspective of a discrete resource allocation problem (20, 21). Some researchers have presented
mathematical formulations for the discrete version of SPSA (22, 23, 24), however these have not
been applied to calibration problems within the transporation domain to the best of our
knowledge.

1.2 Multimodal Microscopic Traffic Simulation

SimMobility is a multi-level, activity-based, multi-modal simulation platorm (25) which consists
of three integrated simulators operating at different time scales. The short-term simulator (ST)
functions at the operational level and simulates movement of agents at a microscopic granularity
(26). The mid-term (day-to-day) simulator (MT) handles transportation demand; it simulates
agents’ behaviour which includes their activity and travel patterns and the movement of vehicles
at a mesoscopic level (27). The long-term (year-to-year) model (LT) captures land use and
economic activity, and predicts the evolution of land use and property development and use, the
associated life cycle decisions of agents, and accounts for interactions among individuals and
firms (28). This modelling approach allows a full integration of all individual choices and the
reliable simulation of its impacts in the transportation system under future mobility scenarios.
Although various simulators have been developed for each of the different time-scales (such as
UrbanSim (29), DynaMIT (30), MITSIMLab (37)), these have not been integrated in a coherent
manner. SimMobility is unique in that the same pool of agents is used across all timeframes:
agents’ long-term behavior is already established when their behavior is modelled in the mid-
term/short-term simulation. SimMobility has been applied to explore how future scenarios
induce shifts in the distribution of people, activities, land use, and transportation network
performance in several contexts: autonomous mobility-on-demand (32, 33), freight (34), public
transit (35, 36), pricing (37).

This paper focuses on the demand calibration of SimMobility Short-term (ST) which
simulates the high-resolution movement of agents (traffic, transit, pedestrians and goods) and the
operation of different mobility services and control systems. This simulator comprises three main
components: microscopic traffic simulator, control and operation systems, and communication
network simulator (details on modeling framework and system architecture may be found in
(26)). The microscopic traffic simulator includes modeling of driving behavior (car-following,
lane-changing, intersection and merging) and travel behavior (route-choice for private vehicle
and public transit trips). SimMobility ST also includes the detailed modeling of the public transit
system through a bus controller agent which is responsible for scheduling and dispatching of
buses, and bus driver agents that manage bus movement near and between bus stops, dwelling at
bus stops, and the monitoring of real-time occupancy. Bus stop agents on the other hand are
responsible for passenger boarding and alighting at bus stops and bus occupancy at stops.
SimMobility ST uses a mode-specific activity-based demand representation generated by
SimMobility Mid-term (MT) instead of the traditional OD flow based demand respresentation.
The trip-chain represents a sequence of multimodal trips (sub-trips) to be simulated and the
agent’s role (pedestrian, passenger, and driver) determines role-specific behavioral
characteristics such as aggressiveness, yielding behavior, look-ahead distance, reaction-time,
walking speed. For the multimodal OD estimation in this paper, we aggregate this trip-activity
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schedule (trip-chain) into the form of an OD vector and then perform a disaggregation into the
trip-chain representation after the calibration process is completed.

The rest of the paper is organized as follows. Section 2 formulates the off-line
multimodal demand calibration problem and Section 3 applies a discrete version of the w-SPSA
solution algorithm to solve the problem. Section 4 applies the framework and solution algorithm
to the calibration of SimMobility ST for a sub-network in Singapore and finally, Section 5
concludes this paper.

2. PROBLEM FORMULATION

The general off-line demand calibration problem is formulated as an optimization problem to
determine the simulation parameter vector (0) that minimizes the objective function (Z):

minZ (0) (1)
s.t. 0c® (2)
where O is the domain of the parameter vector 6.

In this study, we define Z as an aggregate error between simulated and observed
measurements and 0 is the time-dependent multimodal Origin-Destination (OD) demand matrix.
LetIN ={1,2 ..., N} denote the set of the transportation modes, .# ={1, 2, ..., H} the collection of
time intervals in the simulation period, and %, = {1, 2, .., Pn}, the set of unique OD pairs for
mode 7, where n€IN. Thus, the time-dependent OD vector (6) is composed of elements 6,, P

and has a dimension of E;\Ll P,*H. Further, let .#Z, ={1,2, .., M,;} denote the set of sensors

associated with mode n,n€IN. Sensors could, for example, refer to loop detectors measuring
vehicle counts or the recording of transit traveler tap-ins and tap-outs at stops/stations using
smart cards. The measurement vector which contains measurements obtained from the specified
sensors is denoted by M = (M, ,,, ,); n€IN, me.#,, he 7 and is composed of time-dependent
entries for each individual sensor over the simulation time period /7 hence, we have M, * H
elements for each mode in IN. The superscripts ‘Obs’ and ‘Sim’ are used to denote observed and
simulated measurements respectively. Thus, we have the generalized formulation:

. N Mu oH F(7Ob Si
s.t. 1b <@ <ub; M5"™ = (0, )

where Z(ngb;h)'M?:?nh)) is a measure of the error between Mal,);,h) and M?;Hr‘nh) The

contraints involve upper and lower bounds on the OD demands and the mapping of
measurements to the simulation parameters through the simulator denoted by f(). In addition to
the OD demands, the simulator takes as an input other parameters such as driver behavior and
route choice which are denoted by f. The function Z(0) is defined using a generalized least
squares objective function expressed as:

Z(0) = ‘%[QR/}‘?M 4)
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where €, = (M(n,m’h) M(n,m’h)) , VY nelN, me#,, he”Zis a vector containing the the

differences between the observed and simulated measurements , QX/}is the inverse of the

variance-covariance matrix associated with the measurement vector M. The matrix QX/} in effect

provides suitable weights to the different measurements in the objective function.
In the case study presented in Section 4, the set of transport modes include private
vehicles (put) and public transport buses (pt), i.e IN ={puvt, pt}. The OD vector is defined as:

Oop = [prt;ﬂpt], having P, * Hpyy and Py + Hy, elements respectively. Note that the time

interval of the demand vector may differ from the time interval of the measurements.
Furthermore, each type of measurement may be affected by only part of the OD vector: for
example, 0, (PVT) and 0, (PT) will affect the vehicle loop count (VLC) and bus passenger

count (BPC) respectively.

3. PROPOSED SOLUTION

3.1 DSPSA: Discrete version of SPSA

SPSA has been widely applied in the context of offline calibration involving stochastic
simulators with a large number of parameters. SPSA is a type of stochastic approximation
algorithm that determines the optimal solution through the iterative update rule:

Ore1 = Ok — a3 (01) (6)
where gy (@ k) is an unbiased estimate of the gradient at the estimated point of the decision vector

in the k' iteration (@k). a; is computed based on algorithm parameters A, a, « as,

_ a
O = (A+k+1D% (7)

The gradient is computed using two evaluations of the objective function in the k'
iteration as:

gk (ék) = Z(ek)zzkz(ei) Z(0k+CkAk)2;kZ(0k—CkAk) (8)

where, /Ay is a random perturbation vector following a Bernoulli process taking either -1 or 1
with probability of 0.5. ¢, is computed based on algorithm parameters (c, y) as,

_ C
% = (D7 ©)

The standard SPSA algorithm assumes a continuous problem domain. However,
demand calibration involves the allocation of discrete number of trips to a finite set of OD pairs
and hence, involves a discrete problem domain. Reently, a discrete version of SPSA (DSPSA)
has been proposed by researchers to deal with discrete optimization problems such as resource
allocation. This DSPSA algorithm has been tested and compared with the other algorithms
including the stochastic ruler and stochastic comparison (24). The main idea is to approximate
the gradient for a discrete function L by taking the middle point between the ceiling ([0]) and
floor (] 0]) integer points (24).

Qi

original

=n(6) + (10)

1

2

+
original’
value between O and 6+ 1 if O is an integer value which is asymmetric resulting a biased

where, 7t (60) =0 +%. However, the perturbed parameters (0 an.gin ) always take the
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gradient to the plus side. Hence, we modify this fomula to derive a symmetric perturbation while
maintaining the discrete domain as:

1 , 1
O = (101 %3) *3 an
With the perturbation parameter (A), the gradient at k™ iteration is approximated as:

gy () = A0t bor(e) )

i (12)

where, sgn (A) yields the sign of A. Then, we update the parameter vector for next iteration
(k+1) according to Eq.6.

3.2 W-DSPSA: Incorporating Multimodal Weight Matrix

Although the SPSA altgorithm has been successfully applied to the calibration of DTA models, it
has been observed that its accuracy deteriorates as the problem scale increases in terms of
network size and time intervals due to a gradient ‘approximation error’ (/8). To decrease this
approximation error, researchers (/8, 19) have introduced the concept of a weight matrix (W) to
incorporate the spatial and temporal correlations between OD parameters and measurements
which are determined by network topology and route choice behavior. Accordingly, each

component (wer Px(hy-1), M (hz—l)) in the weight matrix represents the relative correlation
between the p™ OD parameter at the interval /17 and the m'" individual sensor measurement in the

interval /1,. We extend this weight matrix W to the multimodal dimension ((vat *prm + Py #

prt) by (Mpvt + H Mot + My +H Mpt)) to capture the correlations determined by the traveler’s

route choice, departure time, and travel-time for both private vehicle and public transit trips.
Note that the notation in Section 2 applies, i.e. Py, Py denote the number of OD pairs

associated with private vehicle and public transit trips respectively; prw, prt denote the

number of time intervals of private vehicle and public transit OD demands; M,,,;,M,; denote the
number of sensors associated with private vehicle and public transit trips and H Myt H My

denote the corresponding number of time intervals for which measurements are available. Thus,
we can express W within the same framework in (/8) as:

wlll wllM wl,M*HM ]
W = Wp1 - Wpm = Wp MsHy, (13)
| PpHp1 -+ WpHpM - WpsHpMsH),|

where, P ={1, ..., Py, Ppos + 1, . Ppoy + Pprfs M={1, .., My, My + 1, .., My + My} Hp =

{1, oy Hy o Hy }; Hy = {1, ey Hago o i, } Recall that M, and M,y in this study

are the vehicle loop count (VLC) and bus passenger count (BPC) respectively. Thus, the

components that represent the correlations between the private vehicle trips with the BPC (

w ) and the public transit trips with the VLC (
{1:vat*H},{(Mpvt*H+1):(Mpvt*H+Mpt*H)}

w ) would be zero.
{(Ppw*H+1):(vat*H+Ppt*H)},{1:Mpvt*H}
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The practical method to estimate the weight matrix for demand is to calculate the
fraction of trips for each mode passing (or boarding/alighting) each individual sensor, commonly
termed the assignment matrix. This relative correlation is calculated as in (/8):

dp, hlm, hz

. _ (14)
+Px(hy-1),m+Mx(hy-1 M o H
p ( 1 ) (hp=1) Xi=1 ijld p i

where, d,, \m, h, denotes the number of trips betwee the pth OD pair departing at hq that

influence m at h,. As noted previously, the weight matrix excludes uncorrelated measurements in
the deviation vector during the gradient approximation. With the introduction of the weight
matrix, Eq.12 is modified as:

~ (@k) :Z((lékJ+%Sgn(Ak))+%Ak)—Z(([@kJ—%sgn(Ak))_%Ak)

8k » Wi (15)
Specifically, the gradient for i parameter is calculated using the OLS (ordinary least
squares) based deviations between observed and simulated measurements for the plus and minus
side (€ ].) which gives:
b 2, 2
s (edg) o)
2i(6x) = ™ Wi (16)

where, D is the number of measurements (M * H,; ); W; is the i row vector of ¥ at iteration £.
The W-DSPSA algorithm described here is applied to solve a large-scale demand calibration
problem in the following sections.

4. IMPLEMENTATION

In this section, the W-DSPSA is applied to the demand calibration of the SimMobility ST model
for a subnetwork in Singpaore. The experimental setup and implementation procedure are first
described followed by a discussion of calibration and validation results.

4.1 Experimental Setting

Study site and data
The network topology for Singapore is shown in Fig.1. The study area under consideration is the
shaded area which consists of 153 TAZs (Traffic Analysis Zone) covering an area of 74.36 km?
including business, commercial, and residential zones. The road network consists of 715 nodes
and 1768 links. The traffic signals are modeled at the node level to replicate the SCATS-like
signal system while bus stops are modeled at a segment/lane level (including bus dwelling,
passenger boarding/alighting).

The signalized intersections are equipped with inductive loop detectors for aggregated
VLC and public transit data is collected through the contactless smart card payment system for
public transport fare collection in Singapore (called EZ-Link card). We extracted the aggregated
BPC that includes passenger boarding and alighting over time at each bus stop. The Land
Transport Authority (LTA) of Singapore provided both intersection loop count data and EZ-Link
data collected from Aug/2013.
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FIGURE 1 Network topology for study area in Singapore (Shaded).

Experimental setting
The simulation time period is lhour (along with an initial simulation warm-up period of 15min)
from the morning peak during typical weekdays. The seed (apriori) OD demand matrix is
obtained from the island-wide simulation of SimMobility MT which uses a synthetic population
(28) and behavioral models estimated from the household interview travel survey data (HITS
2012). We extracted the relevant trips by classifying the trips into four types: internal, incoming,
outgoing, and passing through trips. The private and public-transit ODs are defined at the level
of network nodes. In case of the public-transit demand, a route choice model translates an origin-
destination trip into a specific transit route which includes an access leg from the origin node to a
specific bus or train stop, a transfer leg (if necessary), and an egress leg from a bus/train stop to
the destination node. Accordingly, we have 7,289 and 8,819 OD pairs resulting in 29,156 and
105,828 time-dependent OD pairs for private (15min time intervals) and public transit trips
(5min time intervals) respectively. Although in theory, we would expect 5 minute OD intervals
to better capture temporal OD patterns and hence a yield better fit even if the measurements are
aggregated at 15 minute intervals (as was the case with the available loop detector data), this
comes at the cost of a significantly increased problem dimension and a potentially a larger
number of iterations required for convergence. Moreover, it was observed in preliminary
experiments that the 15 minute OD intervals yielded a reasonably good fit to the sensor counts
and hence the choice of 15 minute intervals for the private vehicle ODs. In case of the public
transit ODs however, it was observed that using 5 minute OD intervals resulted in a significantly
better fit to both boardings and alightings compared to 15 minute OD intervals (possibly due to
greater stochasticity in public transit route choice involving different bus lines, bus routes,
departure time, crowdedness etc,) hence the choice of 5 minute intervals for transit ODs despite
the increase in problem dimension. Other simulation parameters including driving (car-
following, lane-changing, intersection behavior, etc.) and travel behavior (route choice) were
calibrated previously for the Singapore context (26).

The proposed solution in Section 3 with the algorithm parameters (/2) is applied to
calibrate demand parameters using the sensor measurements (788 VLCs and 1,510 BPCs). The
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discrepancy between the observed and simualated measurements is measured using the
normalized root mean square error, RMSN. Note that the simulated measurements are subject to
certain supply constraints including bus operation (controlled with the fixed schedule and route
for 195 bus lines), bus capacity (number of seaters), road capacity, speed limits, etc. The details
of the overall experimental setting are summarized in Table 1.

TABLE 1 Experimental Setting

Items Details

Simulator SimMobility Short-term

Study area 153 TAZs in Singapore (74.36 km?) - 715 nodes, 1768 links

Simulation 29,156 Time-dependent private vehicle OD flows (15min interval)

parameters 105,828 Time-dependent public transit OD flows (5min interval)
Calibrated driving behavior (B) and travel behavior (0)

Measurements 788 VLC measurements (15min interval)

1,510 BPC measurements (30min interval)
Goodness-of-fit | Fit of observed (y,,) and simulated (i/,,) measurement.

o NS (-5
1\WUn—Y
RMSN = s
En:l yn
Calibration a =0.602,a=0.16, A=50
parameters

4.2 Implementation Process

This section describes the implementation of the calibration procedure for the SimMobility ST
simulator. The procedure involves three main steps as shown in Fig.2: Initialization, Calibration,
and Post-processing. Although the implementation process is complicated, we note that the
initialization and post-processing steps are not computationally intensive in comparison with the
solution algorithm itself (computational advantages of the SPSA algorithm are discussed in
Section 1.1).

Initialization

The initilizer extracts the trip-activity tables (which contain a set of trip chains TC() from the
PostgreSQL database and prepares the initial run of the simulation by loading the network
(Shape files), simulation configuration (with extensible markup language format), and sub-
functions (the vector generator, evaluation function). The trip chain (TC) is transformed into the
OD vector (0,) by aggregating the number of trips for each OD pair and time interval. Following
this, SimMobility ST (k = 0) is executed with TC and generates three measurement vectors:
Cgim»> Bsim»> and Ag;,,, associated with VLC and BPC for boarding and alighting respectively.

The vector generator merges the simulated vectors with observed data and generates the
vector for each measurement: M, Mg, and M 4. This module is also responsible for computing
the weight matrix (W) based on the assignment matrices (Eq.13) and to update the link travel-
times to reflect the informed individual route choice decisions for the next iteration (after the
initial (k = 0)). Next, the calibration loop is initiated followed by the estimation of the objective
value (Z;) with Eq.5 in the evaluation step.

Calibration loop
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The calibration loop starts with calculating the perturbed vectors (65) using Eq.11 based on the
gain sequence (a;) determined with calibration parameters (A, a, ) at the k™ iteration. With the
perturbations, we run two simulations in parallel to generate two objective values from plus and
minus side (Z;) with the measurement vectors. Next, we estimate the updated vector (6y47) in
Eq.6 using by the two-sided gradient (g, (6y)) approximated by Eq.16. Finally we run the
simulation (at k) with 6}, to update W and link travel-time for k + 1 and check the convergence
critertia. Note that the vectors (6, 6) are mapped to the trip-activity tables and are used to
update the tables in the PostgreSQL through a killing and cloning process (26). The iterative
process continues until the convergence condition is satisfied with the current objective value (
Z;). If convergence has been achieved (or the maximum number of iterations has been reached),
we move forward to the post-processing and validation step.

Post-processing
Testing is required to determine the reliability and predictive power of the derived solution (6} ).

For validation purposes, the simulated and observed travel-times between origin and destinations
(and the ride-time between stops boarding/alighting) will be compared to assess the area-wide
accuracy. After that we generate and update the trip-activity schedule in the database which
concludes the calibration procedure.

\Initialization ! !Calibration Iaop{ ﬁ‘“’ Rk W
i i i
E i E Calibration parameter
- L )
' Initializer o (—>{ Gain sequence ‘ r—’{Gradiem approximation i
i ) - [ ' alpha,
I SimMobility MT v l ak l thetay, ! a, A, step_size
TCo I I i
v D I Perturbation | Simulation run
imulati o (+) thetay, | BEESERRER S SRCREIREREER,
Simulation run b 3 theta :‘:‘s Last run (k) | ' Post-processing
" _ c v o
Initial run (k=0) P S Csim, Bsim , Asim | ! 1 ,>|
" imulation run " idati
i B Bt : y . Validation
v i : ‘ector generator L
o (+) and (- side S = theta’,
Vector generator i Incl. weigt mat ol v
! L (+) Csim, Bsim , Asim ¢ o '
! Incl. weigt mat. oy (-) Csim, Bsim , Asim Mg Mg Ma L Post-processing H
' o1 A ' ' H '
| Mc, M3, Ma L l —— W, link travek-time - Generate '
. i L . ' trip activity schedule i
. W, link travel-time E E (+) Mo, Mg Ma ‘ Evaliation l L p y :
! thetag D (IMc, Mg | M i :
| = Zy - EEREACA 2z : l '
! Evaluation l—v—": : l Evaluation }—‘
i L

Trip-activity schecule +

FIGURE 2 Calibration Implementation Procedure

4.3 Calibration Results

Calibration performance

The calibration results indicate that the Goodness-of-fit (GoF) measure decreases significantly
over the iterations for both types of measurements (Fig.3). The RMSN improves from 0.81 and
3.5 to 0.32 and 0.56 at convergence for VLC and BPC respectively (an improvement of
60~80%). The initial seed matrix for the transit demands yield a significantly worse starting
point for the BPC compared to the VLC, resulting in a larger number of iterations required for
convergence (150 and 100 iterations, respectively). The relatively poor performance for the
BPCs may be attributed to several reasons. First, although buses are operated based on a fixed
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schedule, these are subject to change and the exact schedule on the days during which data is
collected (which is not available) may differ from that used in the simulations. Second, although
the PT route choice behavior was estimated using smart card data, these might require additional
calibration. Finally, the smart card data does not provide exact origins and destinations and
moreover, no information on waiting time which is an important factor affecting route choice
behavior of transit travelers.

Fig.4 presents the fit-to-counts during the simulation period. On the left figure, the
initial VLCs are underestimated compared to the field observations (grey) whereas at
convergence, the overall measurements (black) show a high R-squared value of 0.858. The right
figure shows a similar trend in BPC. The fits to the number of passengers boarding (blue) and
alighting (red) show that the bus stops, where initially less trips (or none at all) are allocated,
now fit the observed measurements significantly better (R-squared value: 0.986 (boarding) and
0.866 (alighting)).

|
\
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| 1
25 30
| I
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z \1 ‘ g o M
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FIGURE 3 GoF over iterations (left: VLC, right: BPC).
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Characteristics of Calibrated OD Demands

Fig.5 shows the deviation of the calibrated OD demands from the initial points for PV'T and PT
and indicates that the initially underestimated seed OD demands have been appropriately tuned
to achieve convergence. The extent of deviation with respect to the initial values have been
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quantified in terms of RMSN and are 57.9 and 276.7 percent for PVT and PT respectively. The
aggregated PVT demand gradually increases at the beginning of the peak period, while PT
demand also depends on the bus dispatching frequency determining departure/arrival time of
each line from/to each designated stop. The high demand reflected in the calibrated OD demands
are consistent with the measurements. Through iterations, more trips have been allocated to those
OD pairs relevant to the large traffic measured at sensors and a large number of
boardings/alightings at bus stops and intersections located near major train stations of
commercial centers within the study area.
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FIGURE 5 Calibrated ODs versus Initial values (red: PVT, blue: PT).

4.4 Validation
Using the estimated demand, this section reports results from a validation conducted using point-
to-point travel-times (P77) and passenger’s stop-to-stop ride-time with public bus (SRT).

The field PTT is collected through taxi vehicles equipped with GPS sensors during
Aug/2013. For the purposes of comparison, each GPS latitude and longitude (in world geodetic
system) are mapped to network nodes to obtain travel-time measurements between origin and
destination points. These travel-times are then compared against the corresponding OD travel
times measured from the simulation, resulting in 1442 samples for each group. Fig.6 shows the
overall distribution of PTT and gap between observed and simulated travel-time (Gapprr). To
determine the statistical gap of two distributions, we conduct both parametric and nonparametric
two-sided hypothesis tests. Based on the student’s t-test, we fail to reject the null hypothesis
defined with the sample mean (Ho:uprr,, = fiprrg, ). While the nonparametric test (using

wilconxon’s rank-sum) rejects the null hypothesis defined with sample median (Hy:Q2prr obs =
Q2prr,,)- We also measure the gap of two PTTs as: Gapprr = PTTops; = PTTs;y,, Vi €OD pair.

It shows on average, a 1.58 min gap with about a 6min standard deviation (Table 2).

In terms of SR7, we match origin/destination bus stops for each sub-trip completed
during the simulation with individual EZ-Link records. The overall distribution of SRT and its
gap (Gapggr) is listed in Fig.7. The parametric and nonparametric statistical tests accept the null

hypothesises (HO:ySRTObS = UsRTs;, and Hy:Q2grr,,, = Q2srT,,; ) In favor of the alternative
hypothesis at the 99% confidence level. The ride-time gaps (Gapsgr = SRTops; = SRT s, Vi €
Stop pair) on average are estimated at 2.25 min for 1143 samples (see Table 2).
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TABLE 2 Statistical comparison on P7TT and SRT
Type PTT SRT
Observed | Simulated | Gap Observed | Simulated | Gap
Mean (min) 10.42 10.40 -1.58 11.66 10.41 2.25
Std (min) 6.59 6.55 6.17 6.95 6.56 1.97
Student’s t test p-value: 0.966 - p-value: 0.0135 -

test

Wilcoxon’s rank-sum
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FIGURE 6 Distribution of PTT (left: Overall density, right: Cummulative density of gap).
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5. CONCLUSIONS
This paper presents an application of the W-DSPSA algorithm to solve the multimodal demand
calibration problem whose domain is defined over discrete sets. The W-DSPSA algorithm is a
discrete version of the continuous W-SPSA algorithm with the gradient defined using a
symmetric discrete perturbation and multimodal weight matrices. The application of the
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algorithm is demonstrated using a case study involving the calibration of the SimMobility ST
simulator on a sub-network of Singapore. The results indicate that the algorithm at convergence
achieves a significant improvement of 60-80% (with respect to the initial seed OD parameters) in
the normalized root mean squared error between simulated and observed vehicle loop counts
(VLC) and bus passenger counts (BPC). Further, a validation indicates that the calibrated model
suitably replicates point-to-point and stop-to-stop travel time distributions.

Future research includes extending the current framework to the hybrid (discrete-
continuous) problem which includes discrete and continuous valued parameters. Further, the
current demand calibration is limited to an aggregate OD estimation which may not be suitable
for calibrating trip-chains and tours in the context of activity-based demand models. This
promises to be a challenging area for future research.
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