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ABSTRACTThis paper presents a stochastic approximation framework to solve a generalized problem of off-line calibration of demand for a multimodal microscopic (or mesoscopic) network simulationusing aggregated sensor data. A key feature of this problem is that demand, although typicallytreated as a continuous variable is in fact discrete, particularly in the context of agent-basedsimulation. To address this, first, we use a discrete version of the weighted simultaneousperturbation stochastic approximation (termed W-DSPSA hereafter) algorithm for minimizing aGeneralized Least Squares (GLS) objective (that measures the distance between simulated andobserved measurements) defined over discrete sets. The algorithm computes the gradient at eachiteration using a symmetric discrete perturbation of the calibration parameters and a multimodalweight matrix to improve accuracy of the gradient estimate. The W-DSPSA algorithm is thenapplied to the large-scale calibration of multimodal OD flows (including private vehicle (PVT)and public transit trips (PT)) in a microscopic network simulation model of Singapore. Theresults indicate that an acceptable margin of error on the vehicle loop count (VLC) and buspassenger count (BPC) are achieved at convergence with an improvement of 60~80% in rootmean squared errors. Lastly, we validate the calibration results with observed travel-times on thenetwork. Statistical comparison shows good agreements on both point-to-point travel-time (PTT)and public bus’s stop-to-stop ride-time (SRT) with the field observations.
Keywords: Calibration and validation, Weighted Discrete Simultaneous Perturbation StochasticApproximation, Multimodal demand estimation, SimMobility Short-term
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1. INTRODUCTION1.1 Off-line Calibration of Traffic Simulation ModelsDuring the last few decades, extensive research has been devoted to the development of trafficsimulation models that capture traffic dynamics at varying levels of resolution to accuratelyreplicate the real-world. Simulation tools have important applications in understanding theimplications of future scenarios in advance, enabling transportation planners and operators toestimate the impact of urban policy and operational decisions on the transportation system.Recognizing this, the Federal Highway Administration has funded the development of trafficsimulation through the NGSIM program which has already played an important role in variouspolicy assessments (1). Recently, emerging trends in mobility technologies and services (such asautomated mobility-on-demand (2), ride-hailing services) have motivated the development ofmore accurate and high-fidelity traffic simulation models so as to evaluate and assess thesemobility-sensitive scenarios (3).A crucial prerequisite in carrying out policy and operational assessments is the ability togenerate robust, accurate and reliable simulation results, for which, calibration is essential.Calibration is the process of estimating simulation parameters by matching simulatedmeasurements against observed measurements, and has been traditionally formulated as anoptimization problem where the objective function is based on goodness-of-fit measures (4).An important input for traffic simulation is time-dependent OD (origin-destination)flows. This set of dynamic demand parameters has successfully been calibrated with trafficsimulators using various methods: the traditional generalized least squares approach (5),bayesian inference (6), marginal computation with kinematic wave theory (7), principlecomponent analysis (7). The most commonly used approaches for solving optimizationformulations of the calibration problem are gradient descent methods such as theNewton–Raphson method (9) and steepest descent method (10). Another widely used approachis the finite difference stochastic approximation (FDSA) algorithm (11) which is known to besuitable given the non-linear nature of calibration problem and the presence of measurementerrors. A key challenge with the FDSA algorithm lies in mainintaing computational tractabilitygiven the expensive nature of gradient computations. To address this, the simultaneousperturbation stochastic approximation (SPSA) was proposed (12) which significantly improvescomputational performance by perturbing all parameters simultaneously during gradientcomputation. The SPSA algorithm has received significant attention because of efficiency (onlytwo evaluations of the objective function are required in each iteration), applicability (simple toimplement in high-dimensional real-world problems), accuracy (properly handles stochasticityand measurement errors), and has been applied to the off-line demand calibration problems byvarious researchers (13, 14, 15, 16).However, recent work has identified an issue of unstable convergence of the SPSA algorithm inlarge-scale applications arising from the gradient approximation (17, 18, 19). To overcome this,the c-SPSA (cluster-wise SPSA) and W-SPSA (Weighted SPSA) algorithms were proposed. Thec-SPSA (17) approximates the gradient within a small number of homogeneous clusters one at atime. The W-SPSA (18, 19) incoporates spatio-temporal correlations between parameters andmeasurements in approximating the gradient thereby minimizing the impact of uncorrelatedmeasurements. The enhanced algorithms outperform the original SPSA showing improvedrobustness and convergence.In summary, the literature has focused largely on solving the calibration problem usingstochastic approximation (SA) algorithms in the continuous domain. However, certaincalibration parameters are discrete valued (Eg: OD demands) and the discrete nature of these
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variables is not explicitly handled. This paper contributes to the existing literature by presentinga solution approach using the discrete version of W-SPSA (W-DSPSA) which is appropriatewhen the domain of the objective function is defined on a discrete set of points. A case study ona large-scale multimodal network using a traffic microsimulator examines performance of the W-DSPSA algorithm. The motivation is to view the demand calibration problem from theperspective of a discrete resource allocation problem (20, 21). Some researchers have presentedmathematical formulations for the discrete version of SPSA (22, 23, 24), however these have notbeen applied to calibration problems within the transporation domain to the best of ourknowledge.
1.2 Multimodal Microscopic Traffic SimulationSimMobility is a multi-level, activity-based, multi-modal simulation platorm (25) which consistsof three integrated simulators operating at different time scales. The short-term simulator (ST)functions at the operational level and simulates movement of agents at a microscopic granularity(26). The mid-term (day-to-day) simulator (MT) handles transportation demand; it simulatesagents’ behaviour which includes their activity and travel patterns and the movement of vehiclesat a mesoscopic level (27). The long-term (year-to-year) model (LT) captures land use andeconomic activity, and predicts the evolution of land use and property development and use, theassociated life cycle decisions of agents, and accounts for interactions among individuals andfirms (28). This modelling approach allows a full integration of all individual choices and thereliable simulation of its impacts in the transportation system under future mobility scenarios.Although various simulators have been developed for each of the different time-scales (such asUrbanSim (29), DynaMIT (30), MITSIMLab (31)), these have not been integrated in a coherentmanner. SimMobility is unique in that the same pool of agents is used across all timeframes:agents’ long-term behavior is already established when their behavior is modelled in the mid-term/short-term simulation. SimMobility has been applied to explore how future scenariosinduce shifts in the distribution of people, activities, land use, and transportation networkperformance in several contexts: autonomous mobility-on-demand (32, 33), freight (34), publictransit (35, 36), pricing (37).This paper focuses on the demand calibration of SimMobility Short-term (ST) whichsimulates the high-resolution movement of agents (traffic, transit, pedestrians and goods) and theoperation of different mobility services and control systems. This simulator comprises three maincomponents: microscopic traffic simulator, control and operation systems, and communicationnetwork simulator (details on modeling framework and system architecture may be found in(26)). The microscopic traffic simulator includes modeling of driving behavior (car-following,lane-changing, intersection and merging) and travel behavior (route-choice for private vehicleand public transit trips). SimMobility ST also includes the detailed modeling of the public transitsystem through a bus controller agent which is responsible for scheduling and dispatching ofbuses, and bus driver agents that manage bus movement near and between bus stops, dwelling atbus stops, and the monitoring of real-time occupancy. Bus stop agents on the other hand areresponsible for passenger boarding and alighting at bus stops and bus occupancy at stops.SimMobility ST uses a mode-specific activity-based demand representation generated bySimMobility Mid-term (MT) instead of the traditional OD flow based demand respresentation.The trip-chain represents a sequence of multimodal trips (sub-trips) to be simulated and theagent’s role (pedestrian, passenger, and driver) determines role-specific behavioralcharacteristics such as aggressiveness, yielding behavior, look-ahead distance, reaction-time,walking speed. For the multimodal OD estimation in this paper, we aggregate this trip-activity
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schedule (trip-chain) into the form of an OD vector and then perform a disaggregation into thetrip-chain representation after the calibration process is completed.The rest of the paper is organized as follows. Section 2 formulates the off-linemultimodal demand calibration problem and Section 3 applies a discrete version of the w-SPSAsolution algorithm to solve the problem. Section 4 applies the framework and solution algorithmto the calibration of SimMobility ST for a sub-network in Singapore and finally, Section 5concludes this paper.
2. PROBLEM FORMULATION
The general off-line demand calibration problem is formulated as an optimization problem todetermine the simulation parameter vector (𝜽) that minimizes the objective function (𝑍):

min 𝑍 𝜽 (1)
s.t. 𝜽∈Θ (2)

where Θ is the domain of the parameter vector 𝜽.
In this study, we define 𝑍 as an aggregate error between simulated and observedmeasurements and 𝜽 is the time-dependent multimodal Origin-Destination (OD) demand matrix.Letℕ = 1,2 …, 𝑁 denote the set of the transportation modes, ℋ = 1, 2, …, 𝐻 the collection oftime intervals in the simulation period, and 𝒫𝑛 = 1, 2, …, 𝑃𝑛 , the set of unique OD pairs formode n, where  𝑛∈ℕ. Thus, the time-dependent OD vector (𝜽) is composed of elements 𝜃𝑛, 𝑝𝑛,  ℎand has a dimension of ∑𝑁

𝑛=1 𝑃𝑛∗ 𝐻. Further, let ℳ𝑛 = 1, 2, …, 𝑀𝑛 denote the set of sensors
associated with mode 𝑛,𝑛∈ℕ. Sensors could, for example, refer to loop detectors measuringvehicle counts or the recording of transit traveler tap-ins and tap-outs at stops/stations usingsmart cards. The measurement vector which contains measurements obtained from the specifiedsensors is denoted by 𝑴 = (𝑀𝑛,𝑚,ℎ); 𝑛∈ℕ, 𝑚∈ℳ𝑛, ℎ∈ℋ and is composed of time-dependententries for each individual sensor over the simulation time period ℋ; hence, we have 𝑀𝑛 ∗ 𝐻elements for each mode in ℕ. The superscripts ‘Obs’ and ‘Sim’ are used to denote observed andsimulated measurements respectively. Thus, we have the generalized formulation:

min
𝜽

𝑍 𝜽 =∑𝑁
𝑛=1 ∑𝑀𝑛

𝑚=1 ∑𝐻
ℎ=1 𝑍 MObs

𝑛,𝑚,ℎ ,MSim
𝑛,𝑚,ℎ (3)

s. t. 𝒍𝒃 ≤ 𝜽 ≤ 𝒖𝒃; 𝑴𝑺𝒊𝒎 = 𝑓 𝜽, 𝜷

where 𝑍 MObs
𝑛,𝑚,ℎ ,MSim

𝑛,𝑚,ℎ is a measure of the error between MObs
𝑛,𝑚,ℎ and MSim

𝑛,𝑚,ℎ . Thecontraints involve upper and lower bounds on the OD demands and the mapping ofmeasurements to the simulation parameters through the simulator denoted by 𝑓(). In addition tothe OD demands, the simulator takes as an input other parameters such as driver behavior androute choice which are denoted by 𝜷. The function 𝑍 𝜽 is defined using a generalized leastsquares objective function expressed as:
𝑍 𝜽 = 𝝐𝚻

𝑴𝛀−𝟏
𝑴 𝝐𝑴 (4)
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where 𝝐𝑴 = MObs

𝑛,𝑚,ℎ − MSim
𝑛,𝑚,ℎ , ∀ 𝑛∈ℕ, 𝑚∈ℳ𝑛, ℎ∈ℋ is a vector containing the the

differences between the observed and simulated measurements , 𝛀−𝟏
𝑴 is the inverse of thevariance-covariance matrix associated with the measurement vector 𝑴. The matrix 𝛀−𝟏

𝑴 in effect
provides suitable weights to the different measurements in the objective function.In the case study presented in Section 4, the set of transport modes include privatevehicles (𝑝𝑣𝑡) and public transport buses (𝑝𝑡), i.e ℕ = 𝑝𝑣𝑡, 𝑝𝑡 . The OD vector is defined as:
𝜽𝑶𝑫 = 𝜽𝒑𝒗𝒕;𝜽𝒑𝒕 , having 𝑃𝑝𝑣𝑡 ∗ 𝐻𝑝𝑣𝑡 and 𝑃𝑝𝑡 ∗ 𝐻𝑝𝑡 elements respectively. Note that the timeinterval of the demand vector may differ from the time interval of the measurements.Furthermore, each type of measurement may be affected by only part of the OD vector: forexample, 𝜃𝑝𝑣𝑡 (PVT) and 𝜃𝑝𝑡 (PT) will affect the vehicle loop count (VLC) and bus passenger
count (BPC) respectively.
3. PROPOSED SOLUTION3.1 DSPSA: Discrete version of SPSASPSA has been widely applied in the context of offline calibration involving stochasticsimulators with a large number of parameters. SPSA is a type of stochastic approximationalgorithm that determines the optimal solution through the iterative update rule:

𝜃𝑘+1 = 𝜃𝑘 − 𝑎𝑘𝑔𝑘 𝜃𝑘 (6)
where 𝑔𝑘 𝜃𝑘 is an unbiased estimate of the gradient at the estimated point of the decision vector
in the kth iteration (𝜃𝑘). 𝑎𝑘 is computed based on algorithm parameters 𝐴, 𝑎, 𝛼 as,

𝑎𝑘 = 𝑎
𝐴+𝑘+1 𝛼 (7)

The gradient is computed using two evaluations of the objective function in the kthiteration as:
𝑔𝑘 𝜃𝑘 =

𝑍 𝜽+
𝒌 −𝑍 𝜽−

𝒌
2𝑐𝑘

= 𝑍 𝜽𝒌+𝑐𝑘∆𝒌 −𝑍 𝜽𝒌−𝑐𝑘∆𝒌
2𝑐𝑘

(8)
where, ∆𝒌 is a random perturbation vector following a Bernoulli process taking either -1 or 1with probability of 0.5. 𝑐𝑘 is computed based on algorithm parameters (𝑐, 𝛾) as,

𝑐𝑘 = 𝑐
𝑘+1 𝛾 (9)

The standard SPSA algorithm assumes a continuous problem domain. However,demand calibration involves the allocation of discrete number of trips to a finite set of OD pairsand hence, involves a discrete problem domain. Reently, a discrete version of SPSA (DSPSA)has been proposed by researchers to deal with discrete optimization problems such as resourceallocation. This DSPSA algorithm has been tested and compared with the other algorithmsincluding the stochastic ruler and stochastic comparison (24). The main idea is to approximatethe gradient for a discrete function L by taking the middle point between the ceiling ( 𝜃 ) andfloor ( 𝜃 ) integer points (24).
𝜃±

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝜋 𝜃 ± 1
2 (10)

where, 𝜋 𝜃 = 𝜃 + 1
2. However, the perturbed parameters (𝜃+

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, 𝜃−
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) always take thevalue between 𝜃 and 𝜃 + 1 if 𝜃 is an integer value which is asymmetric resulting a biased
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gradient to the plus side. Hence, we modify this fomula to derive a symmetric perturbation whilemaintaining the discrete domain as:

𝜃±
𝑟𝑒𝑣𝑖𝑠𝑒𝑑 = 𝜃 ± 1

2 ± 1
2 (11)

With the perturbation parameter (∆𝑘), the gradient at kth iteration is approximated as:
𝑔𝑘 𝜃𝑘 =

𝑍 𝜃𝑘 +1
2𝑠𝑔𝑛 ∆𝑘 +1

2∆𝑘 −𝑍 𝜃𝑘 −1
2𝑠𝑔𝑛 ∆𝑘 −1

2∆𝑘
∆𝑘

(12)
where, 𝑠𝑔𝑛 ∆ yields the sign of ∆. Then, we update the parameter vector for next iteration(k+1) according to Eq.6.
3.2 W-DSPSA: Incorporating Multimodal Weight MatrixAlthough the SPSA altgorithm has been successfully applied to the calibration of DTA models, ithas been observed that its accuracy deteriorates as the problem scale increases in terms ofnetwork size and time intervals due to a gradient ‘approximation error’ (18). To decrease thisapproximation error, researchers (18, 19) have introduced the concept of a weight matrix (𝑊) toincorporate the spatial and temporal correlations between OD parameters and measurementswhich are determined by network topology and route choice behavior. Accordingly, eachcomponent (𝑤𝑝+𝑃× ℎ1−1 ,𝑚+𝑀×(ℎ2−1)) in the weight matrix represents the relative correlationbetween the pth OD parameter at the interval ℎ1 and the mth individual sensor measurement in the
interval ℎ2. We extend this weight matrix 𝑊 to the multimodal dimension ( 𝑃𝑝𝑣𝑡 ∗ 𝐻𝑝𝑝𝑣𝑡 + 𝑃𝑝𝑡 ∗

𝐻𝑝𝑝𝑡 by 𝑀𝑝𝑣𝑡 ∗ 𝐻𝑀𝑝𝑣𝑡 + 𝑀𝑝𝑡 ∗ 𝐻𝑀𝑝𝑡 ) to capture the correlations determined by the traveler’sroute choice, departure time, and travel-time for both private vehicle and public transit trips.Note that the notation in Section 2 applies, i.e. 𝑃𝑝𝑣𝑡, 𝑃𝑝𝑡 denote the number of OD pairs
associated with private vehicle and public transit trips respectively; 𝐻𝑝𝑝𝑣𝑡, 𝐻𝑝𝑝𝑡 denote thenumber of time intervals of private vehicle and public transit OD demands; 𝑀𝑝𝑣𝑡,𝑀𝑝𝑡 denote thenumber of sensors associated with private vehicle and public transit trips and 𝐻𝑀𝑝𝑣𝑡, 𝐻𝑀𝑝𝑡denote the corresponding number of time intervals for which measurements are available. Thus,we can express 𝑊 within the same framework in (18) as:

𝑊 =

𝑤1,1 … 𝑤1,𝑀
⋮ ⋱ ⋮

𝑤𝑃,1 … 𝑤𝑃,𝑀

… 𝑤1,𝑀∗𝐻𝑀
⋱ ⋮
… 𝑤𝑃,𝑀∗𝐻𝑀

⋮ ⋮ ⋮
𝑤𝑃∗𝐻𝑃,1 … 𝑤𝑃∗𝐻𝑃,𝑀

⋱ ⋮
… 𝑤𝑃∗𝐻𝑃,𝑀∗𝐻𝑀

(13)

where, 𝑃 = 1, …, 𝑃𝑝𝑣𝑡,𝑃𝑝𝑣𝑡 + 1, …𝑃𝑝𝑣𝑡 + 𝑃𝑝𝑡 ; 𝑀 = 1, …, 𝑀𝑝𝑣𝑡,𝑀𝑝𝑣𝑡 + 1, …,𝑀𝑝𝑣𝑡 + 𝑀𝑝𝑡 ; 𝐻𝑃 =
1, …, 𝐻𝑝𝑝𝑣𝑡,1, …,𝐻𝑝𝑝𝑡 ; 𝐻𝑀 = 1, …, 𝐻𝑀𝑝𝑣𝑡,1, …,𝐻𝑀𝑝𝑡 . Recall that 𝑀𝑝𝑣𝑡 and 𝑀𝑝𝑡 in this study
are the vehicle loop count (VLC) and bus passenger count (BPC) respectively. Thus, thecomponents that represent the correlations between the private vehicle trips with the BPC (
𝑤

1:𝑃𝑝𝑣𝑡∗𝐻 , (𝑀𝑝𝑣𝑡∗𝐻+1):(𝑀𝑝𝑣𝑡∗𝐻+𝑀𝑝𝑡∗𝐻)
) and the public transit trips with the VLC (

𝑤
(𝑃𝑝𝑣𝑡∗𝐻+1): 𝑃𝑝𝑣𝑡∗𝐻+𝑃𝑝𝑡∗𝐻 , 1:𝑀𝑝𝑣𝑡∗𝐻

) would be zero.
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The practical method to estimate the weight matrix for demand is to calculate thefraction of trips for each mode passing (or boarding/alighting) each individual sensor, commonlytermed the assignment matrix. This relative correlation is calculated as in (18):

𝑤𝑝+𝑃× ℎ1−1 ,𝑚+𝑀×(ℎ2−1) =
𝑑𝑝, ℎ1𝑚, ℎ2

∑ 𝑀
𝑖=1 ∑  𝐻

𝑗=1 𝑑  𝑝, ℎ1,𝑖,𝑗
(14)

where, 𝑑𝑝, ℎ1𝑚, ℎ2 denotes the number of trips betwee the 𝑝th OD pair departing at ℎ1 thatinfluence 𝑚 at ℎ2. As noted previously, the weight matrix excludes uncorrelated measurements inthe deviation vector during the gradient approximation. With the introduction of the weightmatrix, Eq.12 is modified as:
𝑔𝑘 𝜃𝑘 =

𝑍 𝜃𝑘 +1
2𝑠𝑔𝑛 ∆𝑘 +1

2∆𝑘 −𝑍 𝜃𝑘 −1
2𝑠𝑔𝑛 ∆𝑘 −1

2∆𝑘
∆𝑘

𝑊𝑘 (15)
Specifically, the gradient for ith parameter is calculated using the OLS (ordinary leastsquares) based deviations between observed and simulated measurements for the plus and minusside (𝜖±

𝑀𝑘𝑗) which gives:

𝑔𝑘𝑖 𝜃𝑘 =
∑ 𝐷

𝑗=1 𝜖+
𝑀𝑘𝑗

2
− 𝜖−

𝑀𝑘𝑗
2

∆𝑘𝑖
𝑊𝑘𝑖 (16)

where, 𝐷 is the number of measurements (𝑀 ∗ 𝐻𝑀 ); 𝑊𝑖 is the ith row vector of W at iteration k.The W-DSPSA algorithm described here is applied to solve a large-scale demand calibrationproblem in the following sections.
4. IMPLEMENTATIONIn this section, the W-DSPSA is applied to the demand calibration of the SimMobility ST modelfor a subnetwork in Singpaore. The experimental setup and implementation procedure are firstdescribed followed by a discussion of calibration and validation results.
4.1 Experimental Setting
Study site and dataThe network topology for Singapore is shown in Fig.1. The study area under consideration is theshaded area which consists of 153 TAZs (Traffic Analysis Zone) covering an area of 74.36 km2
including business, commercial, and residential zones. The road network consists of 715 nodesand 1768 links. The traffic signals are modeled at the node level to replicate the SCATS-likesignal system while bus stops are modeled at a segment/lane level (including bus dwelling,passenger boarding/alighting).The signalized intersections are equipped with inductive loop detectors for aggregatedVLC and public transit data is collected through the contactless smart card payment system forpublic transport fare collection in Singapore (called EZ-Link card). We extracted the aggregatedBPC that includes passenger boarding and alighting over time at each bus stop. The LandTransport Authority (LTA) of Singapore provided both intersection loop count data and EZ-Linkdata collected from Aug/2013.
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FIGURE 1 Network topology for study area in Singapore (Shaded).
Experimental settingThe simulation time period is 1hour (along with an initial simulation warm-up period of 15min)from the morning peak during typical weekdays. The seed (apriori) OD demand matrix isobtained from the island-wide simulation of SimMobility MT which uses a synthetic population(28) and behavioral models estimated from the household interview travel survey data (HITS2012). We extracted the relevant trips by classifying the trips into four types: internal, incoming,outgoing, and passing through trips. The private and public-transit ODs are defined at the levelof network nodes. In case of the public-transit demand, a route choice model translates an origin-destination trip into a specific transit route which includes an access leg from the origin node to aspecific bus or train stop, a transfer leg (if necessary), and an egress leg from a bus/train stop tothe destination node. Accordingly, we have 7,289 and 8,819 OD pairs resulting in 29,156 and105,828 time-dependent OD pairs for private (15min time intervals) and public transit trips(5min time intervals) respectively. Although in theory, we would expect 5 minute OD intervalsto better capture temporal OD patterns and hence a yield better fit even if the measurements areaggregated at 15 minute intervals (as was the case with the available loop detector data), thiscomes at the cost of a significantly increased problem dimension and a potentially a largernumber of iterations required for convergence. Moreover, it was observed in preliminaryexperiments that the 15 minute OD intervals yielded a reasonably good fit to the sensor countsand hence the choice of 15 minute intervals for the private vehicle ODs. In case of the publictransit ODs however, it was observed that using 5 minute OD intervals resulted in a significantlybetter fit to both boardings and alightings compared to 15 minute OD intervals (possibly due togreater stochasticity in public transit route choice involving different bus lines, bus routes,departure time, crowdedness etc,) hence the choice of 5 minute intervals for transit ODs despitethe increase in problem dimension. Other simulation parameters including driving (car-following, lane-changing, intersection behavior, etc.) and travel behavior (route choice) werecalibrated previously for the Singapore context (26).The proposed solution in Section 3 with the algorithm parameters (12) is applied tocalibrate demand parameters using the sensor measurements (788 VLCs and 1,510 BPCs). The
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discrepancy between the observed and simualated measurements is measured using thenormalized root mean square error, RMSN. Note that the simulated measurements are subject tocertain supply constraints including bus operation (controlled with the fixed schedule and routefor 195 bus lines), bus capacity (number of seaters), road capacity, speed limits, etc. The detailsof the overall experimental setting are summarized in Table 1.

TABLE 1 Experimental SettingItems DetailsSimulator SimMobility Short-termStudy area 153 TAZs in Singapore (74.36 km2) - 715 nodes, 1768 linksSimulationparameters 29,156 Time-dependent private vehicle OD flows (15min interval)105,828 Time-dependent public transit OD flows (5min interval)Calibrated driving behavior (β) and travel behavior (δ)Measurements 788 VLC measurements (15min interval)1,510 BPC measurements (30min interval)Goodness-of-f i t(GoF) Fit of observed (𝑦𝑛) and simulated (𝑦𝑛) measurement.
𝑅𝑀𝑆𝑁 =

𝑁 ∑𝑁
𝑛=1 𝑦𝑛 − 𝑦𝑛

2

∑𝑁
𝑛=1 𝑦𝑛Calibrationparameters 𝛼 = 0.602, a = 0.16, A = 50

4.2 Implementation Process
This section describes the implementation of the calibration procedure for the SimMobility STsimulator. The procedure involves three main steps as shown in Fig.2: Initialization, Calibration,and Post-processing. Although the implementation process is complicated, we note that theinitialization and post-processing steps are not computationally intensive in comparison with thesolution algorithm itself (computational advantages of the SPSA algorithm are discussed inSection 1.1).
InitializationThe initilizer extracts the trip-activity tables (which contain a set of trip chains 𝑇𝐶0) from thePostgreSQL database and prepares the initial run of the simulation by loading the network(Shape files), simulation configuration (with extensible markup language format), and sub-functions (the vector generator, evaluation function). The trip chain (𝑇𝐶0) is transformed into theOD vector (𝜃𝑜) by aggregating the number of trips for each OD pair and time interval. Followingthis, SimMobility ST (𝑘 = 0) is executed with 𝑇𝐶0 and generates three measurement vectors:
𝐶𝑠𝑖𝑚, 𝐵𝑠𝑖𝑚, and 𝐴𝑠𝑖𝑚 associated with VLC and BPC for boarding and alighting respectively.The vector generator merges the simulated vectors with observed data and generates thevector for each measurement: 𝑀𝐶, 𝑀𝐵, and 𝑀𝐴. This module is also responsible for computingthe weight matrix (𝑊) based on the assignment matrices (Eq.13) and to update the link travel-times to reflect the informed individual route choice decisions for the next iteration (after theinitial (𝑘 = 0)). Next, the calibration loop is initiated followed by the estimation of the objectivevalue (𝑍0) with Eq.5 in the evaluation step.
Calibration loop
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The calibration loop starts with calculating the perturbed vectors (𝜃±

𝑘 ) using Eq.11 based on thegain sequence (𝑎𝑘) determined with calibration parameters (𝐴, 𝑎, 𝛼) at the kth iteration. With theperturbations, we run two simulations in parallel to generate two objective values from plus andminus side (𝑍±
𝑘 ) with the measurement vectors. Next, we estimate the updated vector (𝜃𝑘+1) inEq.6 using by the two-sided gradient (𝑔𝑘 𝜃𝑘 ) approximated by Eq.16. Finally we run thesimulation (at 𝑘) with 𝜃𝑘+1 to update 𝑊 and link travel-time for 𝑘 + 1 and check the convergencecritertia. Note that the vectors (𝜃±

𝑘 , 𝜃𝑘) are mapped to the trip-activity tables and are used toupdate the tables in the PostgreSQL through a killing and cloning process (26). The iterativeprocess continues until the convergence condition is satisfied with the current objective value (
𝑍𝑘). If convergence has been achieved (or the maximum number of iterations has been reached),we move forward to the post-processing and validation step.
Post-processingTesting is required to determine the reliability and predictive power of the derived solution (𝜃∗

𝑘 ).
For validation purposes, the simulated and observed travel-times between origin and destinations(and the ride-time between stops boarding/alighting) will be compared to assess the area-wideaccuracy. After that we generate and update the trip-activity schedule in the database whichconcludes the calibration procedure.

FIGURE 2 Calibration Implementation Procedure
4.3 Calibration ResultsCalibration performanceThe calibration results indicate that the Goodness-of-fit (GoF) measure decreases significantlyover the iterations for both types of measurements (Fig.3). The RMSN improves from 0.81 and3.5 to 0.32 and 0.56 at convergence for VLC and BPC respectively (an improvement of60~80%). The initial seed matrix for the transit demands yield a significantly worse startingpoint for the BPC compared to the VLC, resulting in a larger number of iterations required forconvergence (150 and 100 iterations, respectively). The relatively poor performance for theBPCs may be attributed to several reasons. First, although buses are operated based on a fixed
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schedule, these are subject to change and the exact schedule on the days during which data iscollected (which is not available) may differ from that used in the simulations. Second, althoughthe PT route choice behavior was estimated using smart card data, these might require additionalcalibration. Finally, the smart card data does not provide exact origins and destinations andmoreover, no information on waiting time which is an important factor affecting route choicebehavior of transit travelers.

Fig.4 presents the fit-to-counts during the simulation period. On the left figure, theinitial VLCs are underestimated compared to the field observations (grey) whereas atconvergence, the overall measurements (black) show a high R-squared value of 0.858. The rightfigure shows a similar trend in BPC. The fits to the number of passengers boarding (blue) andalighting (red) show that the bus stops, where initially less trips (or none at all) are allocated,now fit the observed measurements significantly better (R-squared value: 0.986 (boarding) and0.866 (alighting)).

FIGURE 3 GoF over iterations (left: VLC, right: BPC).

FIGURE 4 Fit-to-counts (left: VLC (veh/15min)), right: BPC (pax/30min)).
Characteristics of Calibrated OD DemandsFig.5 shows the deviation of the calibrated OD demands from the initial points for PVT and PTand indicates that the initially underestimated seed OD demands have been appropriately tunedto achieve convergence. The extent of deviation with respect to the initial values have been
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quantified in terms of RMSN and are 57.9 and 276.7 percent for PVT and PT respectively. Theaggregated PVT demand gradually increases at the beginning of the peak period, while PTdemand also depends on the bus dispatching frequency determining departure/arrival time ofeach line from/to each designated stop. The high demand reflected in the calibrated OD demandsare consistent with the measurements. Through iterations, more trips have been allocated to thoseOD pairs relevant to the large traffic measured at sensors and a large number ofboardings/alightings at bus stops and intersections located near major train stations ofcommercial centers within the study area.

FIGURE 5 Calibrated ODs versus Initial values (red: PVT, blue: PT).
4.4 ValidationUsing the estimated demand, this section reports results from a validation conducted using point-to-point travel-times (PTT) and passenger’s stop-to-stop ride-time with public bus (SRT).The field PTT is collected through taxi vehicles equipped with GPS sensors duringAug/2013. For the purposes of comparison, each GPS latitude and longitude (in world geodeticsystem) are mapped to network nodes to obtain travel-time measurements between origin anddestination points. These travel-times are then compared against the corresponding OD traveltimes measured from the simulation, resulting in 1442 samples for each group. Fig.6 shows theoverall distribution of PTT and gap between observed and simulated travel-time (𝐺𝑎𝑝𝑃𝑇𝑇). Todetermine the statistical gap of two distributions, we conduct both parametric and nonparametrictwo-sided hypothesis tests. Based on the student’s t-test, we fail to reject the null hypothesisdefined with the sample mean (𝐻0:𝜇𝑃𝑇𝑇𝑂𝑏𝑠

= 𝜇𝑃𝑇𝑇𝑆𝑖𝑚
), while the nonparametric test (using

wilconxon’s rank-sum) rejects the null hypothesis defined with sample median (𝐻0:𝑄2𝑃𝑇𝑇𝑂𝑏𝑠 =
𝑄2𝑃𝑇𝑇𝑆𝑖𝑚). We also measure the gap of two PTTs as: 𝐺𝑎𝑝𝑃𝑇𝑇 =  𝑃𝑇𝑇𝑂𝑏𝑠𝑖 − 𝑃𝑇𝑇𝑆𝑖𝑚𝑖 ∀𝑖 ∈𝑂𝐷 𝑝𝑎𝑖𝑟.
It shows on average, a 1.58 min gap with about a 6min standard deviation (Table 2).In terms of SRT, we match origin/destination bus stops for each sub-trip completedduring the simulation with individual EZ-Link records. The overall distribution of SRT and itsgap (𝐺𝑎𝑝𝑆𝑅𝑇) is listed in Fig.7. The parametric and nonparametric statistical tests accept the nullhypothesises (𝐻0:𝜇𝑆𝑅𝑇𝑂𝑏𝑠

= 𝜇𝑆𝑅𝑇𝑆𝑖𝑚
and 𝐻0:𝑄2𝑆𝑅𝑇𝑂𝑏𝑠 = 𝑄2𝑆𝑅𝑇𝑆𝑖𝑚) in favor of the alternativehypothesis at the 99% confidence level. The ride-time gaps (𝐺𝑎𝑝𝑆𝑅𝑇 =  𝑆𝑅𝑇𝑂𝑏𝑠𝑖 − 𝑆𝑅𝑇𝑆𝑖𝑚𝑖 ∀𝑖 ∈

𝑆𝑡𝑜𝑝 𝑝𝑎𝑖𝑟) on average are estimated at 2.25 min for 1143 samples (see Table 2).
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TABLE 2 Statistical comparison on PTT and SRTType PTT SRTObserved Simulated Gap Observed Simulated GapMean (min) 10.42 10.40 -1.58 11.66 10.41 2.25Std (min) 6.59 6.55 6.17 6.95 6.56 1.97Student’s t test p-value: 0.966 - p-value: 0.0135 -Wilcoxon’s rank-sumtest p-value: 7.418e-12 (≈0) - p-value: 0.0138 -

FIGURE 6 Distribution of PTT (left: Overall density, right: Cummulative density of gap).

FIGURE 7 Distribution of SRT (left: Overall density, right: Cummulative density of gap).
5. CONCLUSIONSThis paper presents an application of the W-DSPSA algorithm to solve the multimodal demandcalibration problem whose domain is defined over discrete sets. The W-DSPSA algorithm is adiscrete version of the continuous W-SPSA algorithm with the gradient defined using asymmetric discrete perturbation and multimodal weight matrices. The application of the
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algorithm is demonstrated using a case study involving the calibration of the SimMobility STsimulator on a sub-network of Singapore. The results indicate that the algorithm at convergenceachieves a significant improvement of 60-80% (with respect to the initial seed OD parameters) inthe normalized root mean squared error between simulated and observed vehicle loop counts(VLC) and bus passenger counts (BPC). Further, a validation indicates that the calibrated modelsuitably replicates point-to-point and stop-to-stop travel time distributions.Future research includes extending the current framework to the hybrid (discrete-continuous) problem which includes discrete and continuous valued parameters. Further, thecurrent demand calibration is limited to an aggregate OD estimation which may not be suitablefor calibrating trip-chains and tours in the context of activity-based demand models. Thispromises to be a challenging area for future research.
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